Q.P. Code: 16EC432

Reg. No:										
----------	--	--	--	--	--	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations Feb-2021 **DIGITAL IMAGE PROCESSING**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Explain the components of digital image processing along with the suitable block 6M
 - **b** Define distance measures in digital image processing? Explain different types of **6M** distance measures.

OR

- a Explain the following mathematical operations on digital images. **6M** i) Array versus Matrix operations ii) Linear versus Nonlinear Operations.
 - **b** Explain the important terms related to Imaging Geometry with suitable applications. **6M** UNIT-II
- a Define Image Transform and Summarize its importance. 3M
 - **b** List out the properties of 2D –Orthogonal Transform and 2D –Unitary transform. 9M

OR

- a Prove the Separable property of 2D -Discrete Fourier Transform with relevant **6M** expression.
 - **b** Determine the image basis function of 2D –Discrete Fourier Transform when N = 4. **6M**

UNIT-III

- a Illustrate the contrast stretching in image enhancement with suitable example. **6M**
 - **b** Illustrate the sharpening spatial filters along with the required expressions. **6M**

- a Explain about Homomorphic filtering with necessary equations. **6M**
 - **b** Outline the importance of the Color Models and explain the RGB models. **6M**

UNIT-IV

- a Identify parts of the degradation/restoration model in image processing and explain **7M** the function the each parts.
 - **b** List out the source of the noise in image processing and outline the spectrum of 5M white noise.

- a Distinguish the Image Enhancement and Image Restoration. **4M 8M**
 - **b** Explain the threshold based segmentation methods with suitable examples.

UNIT-V

a Evaluate the coding efficiency for the following probabilities based on Huffman 8Mcoding.

Symbol	a1	a2	a3	a4	a5	a6
Probability	0.4	0.3	0.1	0.1	0.06	0.04

b Compare the variable length coding and arithmetic coding.

4M

7M

OR

- a Summarize the role of MPEG and SVG for image compression.
 - **b** Compare the lossless compression and lossy compression. 5M

*** END ***